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Summary 

Miner's rule for the cumulative damage due to fatigue, a determi- 

nistic formula which Is well known In engineering practice, has been 

examined earlier from a probabilistic point of view with Birnbaum in 

{2].    Here the assumptions of that model are weakened.    Previously 

the basic assumptions were r.hat crack growth was stochastic  in nature 

with Incremental extensions having a distribution with increasing 

failure rate, and that the cycle of load fluctuations was fixed and 

then repeated under program.    We now assuas. Instead of the distributions 

of Incremental crack extension having increasing failure rate, only that 

for a given load fluctuation, the expected residual damage  Increment 

either in crack initiation or extension, given the damage exceeds a 

preassigned amount is  less than the damage increment which was expected 

for that load fluctuation before it was imposed.    We also weaken the 

assumptions concerning the type of loading spectra which are admitted, 

considering the case of random load fluctuations which are cyclic in 

distribution. 

Utilizing results  from renewal theory we study the expected number 

of cycles until failure under both programmed and random loading spectra 

and exhibit conditions of dependence upon load history under which a 

generalization of Miner's rule agrees with the mathematical expectation 

of fatigue life.    Under other conditions of dependence we obtain bounds 

for the expected number of cycles  to failure under both programmed and 

random loading spectra. 
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1.       Introduction 

In ein earlier publication   [2], Ulrnbaum and Saunders  gave a statisti- 

cal  interpretation of Miner's  rule  (a deterministic  formula appearing 

In   (6))  which has been used historically under almost  all  conditions   in 

fatigue analysis.     In  that  paper Miner's  rule was shown,   under certain 

plausible assumptions,   to be   the  mathematical  expectation  of a stochastic 

variable  regarded as  fatigue   life.    Tills stochastic variable was  the 

number of periods of cyclic oscillations necessary  to  force  the fatigue 

crack,   of which  the  incremental   extensions per cycle   themselves were 

regarded as  random variables  of  a given type,   to exceed  a critical  crack 

length.     This critical   length was  also subject   to  chance   fluctuations  due 

to various causes. 

In what  follows we will   consider only  standardized  specimens  of  a 

material  which  are  subjected   to  fluctuating stresses  due   to  loading  of  a 

periodic or stochastic nature.     To be more specific,   for a  load  (or  lead 

function)  we mean a continuous  piecewise  linear  function  on the positive 

real axis,   the value of which at  any time gives   the stress  imposed by  the 

deflection of the material specimai.    This  loading function will be generically 

denoted by    A,    with or without  affixes.    Thus  a  load   function determines 

such parameters as maximum stress,  minimum stress  and average stress 

which  are usually used  to define each loading oscillation. 

A detailed comparison has been made in   [2]   among several sets  of 

assumptions and their consequences   for Miner's  rule  in  its   trjditional 
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form.     We quote  here  only   Mie most  frequently  used  deterministic  form 

of Miner's  rule,  namely  that   fatigue  life  under a spectrum of loads   can 

be  expressed  as   a harmonic  nenn of  the   lives   under  the  repetition of 

certain  fixed   loads  which   comprise  the  spectrum.     This   form is  dependent 

upon   the assumption  that   the  order of  the  load oscillations  can  be per- 

muted  in any cycle with  the  same  resulting  fatigue  damage.     Thus  it be- 

comes necessary   to  count  only  the number of  oscillations  of each   load of 

a given kind. 

If a given cycle contains various number.-: of different oscillations, 

say n, oscillations of the i load type among k distinct types, then 

the number of such cycles which can be repeated until  failure is 

(1.1) N = * , k    n, 
V   -1 

i~I Ni 

where    N      is  the number of oscillations   to  failure under repeated 

application of the same i^   load. 

By this cumulative damage  rule we determine  the   fraction of damage 

accrued during one  cycle and  use its  reciprocal   to  calculate  the   total 

life.     In practice    N.     are  determined from available data on the  regres- 

sion of stress versus  number of cycles   to failure.     The    n,    are  calculated 

from a typical spectrum of   loads during  the cycle.     Then Miner's   rule  in 

the  form given in  (1.1)   is   used to determine  the  life    N    in cycles  to 

failure. 

The objection  that has  been made  to Miner's  rule  is  thcit  under certain 
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programmed loads witliin  laboratory control,  the  rule can predict   life 

either conservatively or unconservatively depending  In part  upon  the 

order in wliich  the  loads are applied.     This  is   to say that  the  average 

life can be made significantly less or greater  than that predicted by 

(1.1) by seJecting and  repeating certain sequences  of loads of in- 

creasing or decreasing magnitudes.    The evidence  for this  type of 

behavior is well  known,  see   [7] and the references  given there. 

What wc do subsequently in this paper is  to  derive a formula  for 

the expected  life which   retains  the  inflaence  of  load  order.     The basic 

assumption made previously concerning  the  class of  random variahles 

governing incremental  damage  is  relaxed here.     At   the  same  time   the 

stochastic nature   of   the   imposed  loads   is  taken  into account.     More- 

over, our formula also  reduces to the classical   form of Miner's   rule 

(J.l) when  the   loads  are  deterministic  and   their  order can be neglected. 

2.       A Probabilistic Model 

As  in   [2],   it   is   assumed  that  fatigue   failure  is  due  to  the 

initiation,  growth  and ultimate extension of  a dominant crack.     At 

each oscillation of  the imposed stress,  this crack  is either being 

formed by  the  piling up  of  atomic  dislocations  or being extended by 

the  rupture  of  molecular bonds.     In any  case  the  damage accumulates  bv 

an  amount wliich  is   a  random  function of  the  magnitude  of  the  imposed 

stress  and  the  geometry  of   the specimen,  as well  as   the  inhomogeneity 

of  the material  and  the  influence of environment.     The  incremental 

damage at each  fluctuation  is  therefore a non-negative  random variable 



whose dUlrlbuLlon may depend upon several  unknown parameters,  the 

nature of which we do nut specify .\t present.     In what follows we 

shall speak only of  "rrack extension" but  It  Is  to he kept  In mind 

that we refer not  only  u» the crack growth phase  'n the usual sense 

but the sub-micruscoplc phase of crack initiation as well. 

Let     \       denote a  /  ■•. ut-iitoty  through     I     load fluctuations. 

That is denotes  that portion of the  load  function    \    which 

extends from time zero when the K id was  relaxed and the stress  zero 

until the time when the i      fluctuation has occurred. 

Our  first assumption is: 

1°    The  i-" incremental crack extension durinR the  last fluctuation 

of the loading history    \      is a non-negative random variable 

Zi(^1),    depending only upon    A1.      The    Zi(\i)     for    ill 

are statistically independent  random variables. 

This assumption Implies the statistical  independence of the crack 

extensions in each fluctuation not only  from each other but  from the 

total crack length as well.    Of course we do not preclude functional 

dependence between  the successive distributions.    In this manner  the 

dependence upon  the order of the loads  is  retained.    This assumption 

appears  to be sufficient in most  cases.    Certainly such dependence is 

realistic in the  initial stages of  fatigue crack growth, and nu".y be even 

in situations  such  as   those in which  the stress  is near the ultimate yield 

stress of  the metal or  the crack  long  relative   to  the specimen under   cast. 

k^ 
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We now introduce  tlie nomenclature:     If    X    is a non-negative  random 

variable,   its  complementary distribution  function or QO-distribution    R 

is defined as  unity minus  its distribution or 

R(t)  = P[X >  t] for t >  0. 

In life studies  the co-distribution  is called either the  reliability 

or the survival distribution.    We have chosen another name because  such 

terms wov<ld be meaningless in our application here. 

We also make an assumption about  the probabilistic behavior of 

the incremental   crack extension during a given load fluctuation, 

considering that  the  crack extension is   influenced by the  loading 

history of preceding  fluctuations.     Specifically we assume 

2°    The  incremental growth random variable    7.{\), 

for any  loading history     ■ ,     has  a co-distribution 

RC^A)     which  satisfies  the  inequality,  for all 

x    ■  0 

, (.(■ , no 

(2.1) R(x:\)    /     R(t:\)dt  >   /      R(t+x:X)dt. 
0 "0 

The  inequality   (2.1)  is the definition of a class of distributions 

described as  "new better than used in expectation" and denoted by  the 

acronymn NBUE.     It   can  bo  interpreted  as   requiring the expected  residual 

growth of   tlie crack per fluctuation,  knowing the crack extension exceeds 

x,    is   U'ss  than or equal  the expected  crack growth per fluctuation for 

any    x       0.     We  can  write  this,   for all     x ~   0,     as. 
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(2.2) i:[Z()-x :'.()       x]  _ F.Z() 

whirli   is  equivalent  vith   (2.1). 

Tliis  concept   of XBIT va?  first   introduced by  Barlow ami  I'rosrhan 

in  reliability  studies  in   [1]   and was  named  and discussed  systematically 

by Marshall  and  Prosrhan in  [A]. 

We believe  that   the  ^lUJh  assumption   is   realistic since we  can 

now make  one   compel 1 in;.; argument which covers both  the  initiation  and 

crack, extension phases  of  fatigue.     We have only to  interpret   (2.2) 

in words  and  note   its  reasonableness;   if  a given amount  of  damage   is 

known to have  occurred  as a result  of  a particular stress   fluctuation 

then  any expected   amount of damage  remaining would be  less   than  the 

total amount   of damage expected were  that  same  fluctuation   reimposed 

under  identical  conditions. 

In  the  previous  study,  reported   in   [2],  an argument   is  made   that 

crack  growth  by  the  successive  rupture of  molecular bonds  should be  a 

random variable with increasing failure rate (IFR).    As we now show, 

it would  then   ? ;'u-^ V >'," be .\liUE. 

We can see easily that  IFR class contains the NBUE class  if we 

consider the   intermediate classification  "new better than used"   (NBU) 

random variables.     In this case we must have for each  load history 

(2.3) R(t:)R(x:') _ R(t+x:0 for all        t,x      0. 

By   integrating both sides of   (2.3)  with respect  to    t    we obtain 

the  NBUE condition  of   (2.1).     The   inequality   (2.3)  means  that  the  random 
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residual crack growth knowing the crack has already extended  a length 

x > 0 during a fluctuation is stochastically smaller than the  random crack 

growth from the beginning of  the fluctuation.    The relationship   (2.3) 

above can be  rewritten as 

(2<4) 
R<x;;^+x;A>>l-R(t:X). 

The left-hand side of (2.4) being an increasing function of x > 0 

for each t > 0 is equivalent with the general definition of IFR random 

variables, namely, that --'n R(t:0  is convex for t ■ 0. 

Remark:  It follows from 1° that the total crack length at thr end 

of the n  cycle, say S ,  Is a random variable which is the sum of 

independent random variables.  Each summand of S  represents the crack 

growth during the corresponding cycle. 

We make another assumption which replaces the classical one, at 

present considered to be erroneous, that the load oscillations may be 

permuted in any cycle without altering the resulting fatigue damage, 

see [7]. 

This assumption allows the resolution of a load history into an 

equivalent one in terms of fatigue data. 

3° There exists a finite set of loading oscillations, say 

;,. * {.._,... ,(i>,},  such that for any admissible loading 

history A  there exists an equivalent »i. c ;,  written 

\       w ,  for which in distribution 

(2.5) Z(\) = Z(w). 
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like to compare these with the number given by Miner's Rule. 

.  ,th 
We make use of 1° to write the random crack extension under the J 

cyclic repetition of the load spectrum A, of length m,  as 

m 
(3.1) Y 

.1 

m 
(O = ^ zjo1)   j=l,2: 

1 = 1  J 

where different affixes i and j  on the Z 's indicate independent 

replications of the corresponding random variables. 

Let ^Y(,\    be the random number of such cycles until failure.  It 

is defined by 

(3.2) [Nyo) = n] = IS^O) < W, Sn(\) 1 W] 

where 

n 
(3.3) s { ) = V Y (•)   for   n _ 1. 

We now stato a fundamental 

Lemma 1:  If Y..Y»,...  are independent and identically distributed 

non-nogative random variables with mean ;, and S = Y, +•••+ Y  is 
n   1       n 

independent of W for all n=l,2,...  then the integer valued random 

variable N (W) defined by 

(3.A) [NV(W) = n] = [S  .  W, S   W] 
i n-i      n — 

always satisfies the left-hand inequality below 

FW FW 
(3.5) ül - 1 . ENV(W) - — 

i.     —  Y   — u 

and if the V.  are NBUE it satisfies the right-hand inequality as well. 
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Proof: If we lei W = w with probability one then tlie Inequality 

(3.5) is well known to be true under the conditions stated, see [1]. 

From the independence of W and S ,  (3.5) follows by conditional 

expectation. A more complete exposition of this point was made in 

[2l.|| 

By Assumption 1° the Z (X ) for all i = l,...,m, are independent 

and by 2° are NBUE. Thus by a known result, see [4] or as can be easily 

proved from the definition (2.2),the convolution of such random variables 

is NEUE. Hence the Y (\)  for j ü 1 are all random variables which 

are NEUE. Moreover, they are independent and identically distributed. 

Thus from Lemma 1 we have, setting 

w = EW, vO) - ENY(A) and EY (>) = i.(X) 

the relation 

(3.6) -~- - 1 < v(A) < -f-r 
li(A)    -     — M( W 

From (3.6) there follows 

v 
w     .. .   w 

If a spectrum A has m fluctuations then A  for i«l,...,m 

denotes the m load histories, which may not all be distinct in their 

effect upon crack growth.  In fact, it is well accepted that the crack 

does not grow when the load fluctuation is decreasing, see [5]. Addition- 

ally, we make the notatlonal convention that 

(3.7) •  - UJQ   for   i ^ m. 







ÄRWmlÄÄWPB =»I 

-15- 

only roughly repeats itself while the individual fluctuations of load do 

not.  We utilize subsequently the convention that random variables will 

be denoted by upper case letters and the corresponding lower case letters 

the observed values. 

Let us set 

(4.1) 
..+ £:     * (x) 2. 0 for all x  0; 

if \     £       is not identically zero then it must have even length 

in _ 2 so without loss of generality assume the first fluctuation 

is on (0,1), ?  is increasing thereon and moreover is then increas- 

ing on the intervals  (2j,2j+l) for j=0,...,y- 1 and decreasing 

!■"■ the intervnls  (2j-l,2i)  for  i = l,...,— . 

As a consequence of (A.l),    can be characterized by the vector 

(4.2) 

whert' 

( (1), (2),..., (m-1)) 

(2j) •  (2.1+1)   '(2j+2)   .1=0,. 

,.+ 

- - 1 

A typical element in £       is graphed below in figure 2. 

10   U   12 
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We define the  random load    A^    to be ayalio in distribution when- 

ever 

- '  ■ 1   l2     ••• 

whore    A       for    i =  1,   2,...     are  independent  and identically distributed 

replications of some  random load function    i\    on   £ .     Note  in the  case 

M = m   with probability one that we have equality in distribution for all 

i _ .1 
j / k of A. = .,,  for each i - l,...m. This replaces the cyclic 

assumption of Section 3. 

During the j  cycle let Z.(A.) be the random microscopic crack 

extension due both to that portion of the j  random cycle up to the 

i  fluctuation, namely A, and the stochastic variation within the 

material. I.e. its inhomogeneity. 

We sec the total damage in the sense of crack extension during the 

j  cycle of load fluctuations, from our assumption, is 

(4.4) VV^»- 

We now let 

(4.5) S (i) = V Y (A ) 

be the  total crack length at  the end of    n    cycles.    Note that    S   (/_), 

by assumption,   is  the sum of    n    independent and identically distributed 

random variables. 

What we would  like  to prove is  that   (3.5)  holds  for the random 

variable    N   ...,     which  is defined by the formula corresponding to   (3.2) 

■M 
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with    S      now defined by  (4.5).     However, we  cannot proceed exactly 
n 

as before because  the  assumption of     Z   (X   )     being NBUE  is  not  sufficient 

to imply  that    Z  (A^)    are  in the  same class.    One may see this  from the 

conditional expectation 

PIZ^A1)      x]  = ER(x:A^) 

by knowing mixtures of NBUE variables are not necessarily NBUE.     See  the 

example  in Appendix A.    Moreover,   the    Z   (A  )     need not even be independent 

since  the    A       are not.    Therefore,   the hope  that the NBUE property could 

be invoked to use  the right-hand inequality  of  (3.5)  is vain.     Con- 

sequently, we must  impose  further assumptions on the basic model. 

We now state  the crucial assumption 

5°  For any    x > 0,    a co-distribution    lUx:*)    is  a convex 

function over the convex sample space   £  . 

Clearly  £       and  £      are convex spaces.     They represent  loading 

functions  in which  the specimen is exclusively in either compression or 

tension.     However,  spectra which  contain fluctuations which are both 

compressive and extensional may not,  in general, form a convex space 

unless other assumptions are made.     Thus to assume that  the spectra of 

the yround-air-ground cycle is a convex space  it would be necessary  to 

assume  that  each  of the three portions would be of fixed length.     Of 

course,   this  might be  suitable  for some  applications but  not   for  others. 

Before we  proceed with determining the  implications of  this  assump- 

tion let  us discuss  its  reasonableness.     That ^   is  a convex space is 
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merely a mathematical restriction on the type of admissible loading. 

It is made only to facilitate our analysis. However, the second part 

of the assumption, to wit ,  R(x:*) is a convex function, is a strong 

inference about the nature of fatigue crack growth. Thus any conclusion 

we draw must reflect any uncertainty that we have in this assumption. 

Consider the vector representation of A as given in (4.2) 

It is clear that for any x > 0, R(x:X) should be convex increasing 

as a function of each of the fluctuation peaks (maximum stress per 

oscillation) X(2i+1), i«0 -r-" ^ an^  convex decreasing as a 

function of the fluctuation troughs (minimum stress per oscillation) 

A(2j), j=l -j - 1.     See References [3] and [9] and Appendix B. 

What we assume in the second part of 4° is the joint convexity 

over all the variables A(i), 1=1,...,m-1 restricted by 

X(2j) < A(2j+1) > A(2j+2),   j=0,...,y- 1. 

Thus our simply stated assumption of joint convexity is not too great 

a conceptual step from the known convexity in each variable separately. 

Because £ is assumed to be a convex space it follows, since A 

is a random function taking values in £, that EA is a spectrum in 

£. The other part of 5°, namely that R^:*) is convex over £ is 

equivalent with the stochastic Inequality 

(4.6) Y(A) _> Y(EA). 

To see this note by the theorem on conditional probabilities that 

for all y > 0 
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(4.7) P[Y(A) ^ y]  - KR(y:A)   >_ R(y:EA) - P[Y(EA) ^ y]. 

By adding  independent  Identically distributed variates  each pair 

satisfying   (4.6) we have  from the definition in   (4.7)   the stochastic 

inequality 
S   (A)   > S   (EA) 

n '- n 

By analogy with  the fundamental  lemma equation (3.4) we have 

tNY(A)^nl   =   ^n^l^ 

thus  there  follows  the stochastic  inequality 

(4-8) NY(A)^    NY(EA)- 

But note that Y (EA) are NBUE by the assumption of Section 3. 

Thus by taking expectations of (4.8) and the Equation (3.5) of the 

fundamental lemma we have 

EW 
(4.9) EN  < 

Y(A) - p(EA) ' 

For i > 1,  .i=0,.. . ,k set 

PlA^l-p]. 

We consider the   typical Incremental  crack growth per random cycle 

Y(A)  =    ^    Z^A1) 
i^l 

then by properties of conditional expectation 

k , 
(4.10) EZi(Ai)  = E    E[Zi((iJJlA1       a-   ]  =    v    p.pj. 

A J J j=l    -1  J 

—mm* 
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Tlius we obtain the expression 

k k 
- EY(A) -   ^       $;    M.pJ -   1    M.n. 

1>1    j-i    J  J      j-1    J J 

where 

(A.11) n.  -=   i   pj - E   I    {A1  -  uj } - En. (A) 
1^1    -^ 1>1 J ^ 

is the expected number of histories    A      In the cycle    A    equivalent 

with    w ,     to use  the notation of  (3.10).    By multiplying  (3.9) by 

n.    and summing we have 

k      n                          ^ n4 
w   ^         ]-   <  M  < w   \ —^ 

T UJ+1 *   "    J-i VJ 

Rewriting the above we obtain 

1   , w ,. 1 
k n. — P — k  n^ 
V _1      S _±. 
T  ^ 1   vi+1 

By Lemma 1 we know that for every sequence of independent   identlcnlly 

distributed random variables,   in particular    Y  (A  ),    J«l,2,...,    we have 

— _   1   <   pw 
U       i - LNY(A)- 

Thus we  obtain 

1  <  EN. 

J-lv3 

It  is known  that  for some    MNBUE    variables    Y,    we have    ENV j_ w/EV, 

We must make use of the convexity  as given by  (A.6). 
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Cotnbinlng the left-hand side of  (3.12) with (A.9) we have 

w EN, Y(A) - u(EA) -   k    n,(EA)  ' 
y -j— 
i  vj+1 

This  completes the result for random spectra.    Note that if    A    is 

deterministic this reduces to the same bounds which were given in (3.13). 

Theorem 2;    For Random Spectra on Convex Spaces.    If the stochastic 

nature of incremental crack growth satisfies assumptions 1°,  2° and 5°, and 

each independent replication of a random spectra   A    with convex sample 

space results in independent crack extensions    Y(A),    then the number of 

replications of    A    that can be made until the crack exceeds a given 

stochastic limit, satisfying 48, has  finite expectation    ENY/A\    which is 

bounded by 

(4-12) k    En,(A)  " 1 1 ENY(A) 1   k    MiO   ' 

j-1 j J-l       j 

where by Assumption 3°  for each    w,   e fl   we know 

(4.13) v    - ENV,    v    and    n, (X) -   2 {X1 = a,.}     . J Y(aJj) j ^ J 

We can also obtain the 

Corollary 2.1:    Supresslng assumption 5°,  including the convexity 

of the sample space of  the random spectra   A,    we see that  the number 

of replications of    A    until  the crack exceeds  the stochastic limit 

satisfying 4° has expectation bounded below by  the left hand side of 

-•suation  (4.12). 
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5.     Conditionally Convex Spaces of  Random Spectra 

Let us now consider the situation when the  loading spectra may have 

its  length,  or a portion,  of  random duration.     This  case  cannot be treated 

by  the assumptions used hithertofore.     For example,   each portion of the 

ground-air-ground cycle such  as  take-off,  flight and landing may well be 

of such significant variability that it should be considered of random 

duration.     In this situation  the sample space of load spectra would not 

be  convex.     Nevertheless,  there is  a set of conditions which  if known 

(for example,  the gross  take-off weight, barometric pressure,  and the 

length of  time of flight)  make all  the random spectra with  these given 

boundary  conditions have  the same distribution on a convex subset of the 

sample  space. 

Thus we postulate,   there exists a random couple     (A,^)     having a 

joint  distribution on   £ *   T     for which the conditional random function 

AIfi,     for each     t      T,     is a  random spectrum taking values   in a convex 

subspace  of   £.    The case we have  in mind is    !\\$    being a random spectrum 

of  fixed  length in each of its portions as was  considered in the preceding 

section. 

What we wish to determine is  bounds on 

ENY(A,0)    Where    Y(A»$)  =   -    Z1^1.*)- 

Here again    Z  (A   ,0    are the random Incremental crack extensions 

immediately  following the 1       fluctuation within the history. 

By  assumption    Y.(A   ,!   ),    j = l,2,...,    are  independent  and identically 

distributed  random variables with  expectation     u ■ EY(A,tO. 
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Rearranglng terms using the properties of conditional expectation, 

and with an obvious modification of (4.10), we have 

k 

'  i.l j-1 ■'  i>l ■, 

We now have 

k 
v V U.E E n (A|*) = V u n* 

j-1 J ^ '        i-l2  1 

where we set, by analogy with   (3.10)  and   (4.11) 

n* « En   (A,4) j - l,...,k 

Proceeding as before, from (3.9), we obtain 

__1      w      1 
k nf  - u    - "k ^ 

j=i vj       jti ^+1 

By the fundamental lemma, for any non-negative random variable 

ENY(A,<f) 

Consider the set 

3»* - U tP: ER(-:EA|-1') > R(-:EA|^)} 

where an inequality betwet-n   functions  indicates the  corresponding 

inequality between  functional values  for all  values  of  the domain. 

If J**    is not empty,  it  follows by Zorn's lemma, since linearly 

ordered subsets of   'P*t    ordered by the  function    R(«:EA|(J))     for 

4)  e T ,    have  lower bounds,   that there are minimal elements of   T  . 

We   then pick    $    as  the maximum likelihood of  the minimal elements 

rated by  the marginal density of     1. 

1 -  1<    * —    n k    n* 
V   -i. 

j-1 ^ 
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Proceeding in the same manner as before, by using the properties 

of conditional expectation and the convexity of the domain as well as 

that of the co-distribution function, we have 

ER(':A,*) ^ ER(. :EA|*) _> R(.:EA|$). 

Ultimately we obtain 

1 
(5.1) ____    .l1ENY(A)})1        k    n4(EA||) 

j-1   VJ j-1   vj+1 

Theorem 3:    For Random Spectra on Conditionally Convex Spaces.    If the 

stochastic nature of incremental crack growth satisfies  assumptions  1°, 

2°  and  3°  and each  independent   replication of  the  random couple    (A,t) 

causes an independent crack extension   Y(A,l)    and the conditional 

spectrum   A | ^   has a convex sample space for each    $    and the marginal 

distribution is known,   then the number of replications of    (A,0    that 

can be made until the crack exceeds a given stochastic  limit, satisfying 

4°, has  finite expectation    ENy/.   ,,N    which is bounded by  (5.1)  above. 
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APPENDIX A 

Take    R(x:v)  = e\p{-x/,-0))    for    x > 0.     One  checks easily 

that the NBUE property is satisfied.     However,   let    A    take two 

values, say    X.     and     •-,,    each with equal probability.    Then 

ER(x:A)  - ^[expC-x/y^) + exp(-x/u7)]   . 

To have this mixed distribution be NBUE is equivalent with 

J    expL^] + expLf^-]  dy 

hivfuj  L    —5- 
exp(-x/u.) + exp(-x/ii9) 

for all    x   •  0.     Upon simplifying we obtain the  inequality 

f .     -x/uo./      ,v     -x/u-i 
(Uj^-u,)  e - _  (Pj-i^)  e 1 

whi ch is clearly impossible unless    u.  "  u9. 
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APPENDIX B 

In order to see  that current hypotheses concerning crack, growth 

rates are not  in disagreement with  this assumption we note that 

R(x:')    being convex over   £   for each    x > 0     implies that 
no 

•i. R(x:')dx    is also convex over    £   .    This integral is the expected 

crack extension.     In   [5]   the "crack growth rate"  is given as pro- 

portional to 

a b 
f(x,y) - x  (x-y)      for    x >  y > 0 

where    x    is the maximum load and    y    is  the minimum load and both 

are unsealed.    We interpret these two concepts as being the same. 

The question now is, does there exist  a region of values of 

a,b    over which  f    is  convex and if so,   is  the  region In conformity 

with those values obtained by experiment. 

A well known condition both necessary and  sufficient for the 

convexity of twice differentiable functions is 

f      2. 0,       f      10,      ff      if2, 
xx yy xx yy        xy 

with subscripts denoting partial differentiation.     One checks  that 

f    /f.a^a + b^+    2ab 
xx 2 /      N2      x(x-y) (x-y)* 

f    /f      b2-b 

yy (x-y)2 

f    /f =    -ab 

xy x(x-y) 
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Thus clearly a,b i 1  implies f  > 0,  f  > 0. 
xx      yy 

We now check that  f f  if   is equivalent with xx yy        xy 

f. /f i a2b2/[x2(b:!-b)].     But note  that    xy/f    Ji    >    y Va2-a    +    x v b2-b 

2 2 2  2 
since    1 ^ b + a    implies    (a -a) (b -b)   <  a b   .     Thus 

y Vsi -a    +    xVb2-b    ^    yab/V^-b 

is a sufficient condition for convexity.     However this last  inequality 

is equivalent with 

I >   l  -        b2-b 
x ~ ab- \/(b2-b)a2-a 

Now    1 ^ ^- £ 0,  hence  the inequality above is  true if the right hand 

side is always negative, which is  true  if 

a      a ba 

But the square roct oi a numi>er less than one exceeds the number. 

Hence, a sufficient condition for convexity is 

1 - ^ - T + ^T^1-^  if an only lf b - ! +v/ä"- 

Thus  if    b » 4,     a - 0    and  if    b =  3,     a i  4.    These values  art 

not in disasreement with observed values.     Also not*, that  in order  to 

obtain simplicity we have been exceedingly wasteful with our inequality. 

For example,   from physical reasons    x    must be bounded and  this restriction 

has not been  imposed. 
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CONCLUDING REMARKS 

In this paper we have made an attempt to find physically 

realizable conditions under which both upper and lower bounds on 

the expected number of cycles until failure can be found and expressed 

by a formula which is a generalization of a variant of Miner's rule. 

We should not lose sight of the fact that some of the mathematical 

structure imposed was only necessary to obtain the upper bound and 

thus insure that the expected number of cycles is given approximately 

by one form of Miner's rule. Without making the restrictive assumption 

5°, we have the lower bound (4.11) holding for arbitrary £. 

Thus we conclude that a variation of Miner's rule gives a 

conservative lower bound for the expected number of cycles until 

failure under very general conditions. 
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